PLL Algorithms (Permutation of Last Layer)
Developed by Feliks Zemdegs
and Andy Klise

Algorithm Presentation Format

Round brackets are used to segment algorithms to assist memorisation and group move triggers.

Moves in square brackets at the end of algorithms denote a U face adjustment necessary to complete the cube from the states specified.

It is recommended to learn the algorithms in the order presented.

Permutations of Edges Only

Suggested algorithm here
Alternative algorithms here
PLL Case Name - Probability = 1/x

Permutations of Corners Only

Round brackets are used to segment algorithms to assist memorisation and group move triggers.

Moves in square brackets at the end of algorithms denote a U face adjustment necessary to complete the cube from the states specified.

It is recommended to learn the algorithms in the order presented.
Swap One Set of Adjacent Corners

Ra - Probability = 1/18

(R' U' R' U') (R U R D) (R' U' R D') (R' U2 R' R) [U]

(R U U2) R' F (R U R' U') R' F' R2 [U]

Rb - Probability = 1/18

(R' U' L' U2) (R U' R' U2 R) L [U]

(R U R' F') (R U2 R' U2) (R' F R U) (R U2' R') [U]

Jb - Probability = 1/18

(Ga - Probability = 1/18

(R' U2 R U2') R' F (R U R' U') R' F' R2 [U]

(R' U2 R' D') (R U R' R) (R' U' R) [U]

Gb - Probability = 1/18

(R U R' F') (R U R' U') R' F R2 U' R' [U]

(R U R' F') (R U R' U') R' F R2 U' R' [U]

Swap One Set of Diagonal Corners

V - Probability = 1/18

(R' U R' U') y (R' F' R2 U') (R' U R' F) R' F R2 U' R' [U]

(F (R U' R' U') (R U R' F') (R U R' U') (R' F R F'))

Y - Probability = 1/18

(R U R' U') (R' F' R2 U') (R' U R' F) R F

(R U R' U') (R' F' R2 U') (R' U R' F) R F

Na - Probability = 1/72

(R U R' U') (R' F' R2 U') (R' U R' F) R' F R2 U' R' [U]

(R U R' U') (R' F' R2 U') (R' U R' F) R' F R2 U' R' [U]

Nb - Probability = 1/72

(R U R' U') (R' F' R2 U') (R' U R' F) R F

G Permutations (Double cycles)

Ga - Probability = 1/18

(R U R' U') (R U R' D) D U' (R' U R D') [U]

(R U R' U') (R U R' D) D U' (R' U R D') [U]

(F' U' F) (R2 u R' U) (R U R' u') R2'

(y' R' U' y F (R2 u R' U) (R U R' u') R2'

Gd - Probability = 1/18

(R U R' U) D (R2 U R' U) (R U R' u) R2 [U]

(R U R') y' (R2 u' R' U) (R' U R' u) R2

(Gb - Probability = 1/18

(R U R U' U) (R U R' D) (U R U' R') D [U]

(D' (R U R' U) (R U R U') (R U R U') R2 [U]

(R U R' U) (R U R U') (R U R U') R2 [U]

Ga - Probability = 1/18

(R U U2' R' U2) R' F (R U R' U) R' F R2 [U]

(Gc - Probability = 1/18

(R U R' U) (R U R U') (R U R U') R2 [U]

(R U R' U) (R U R U') (R U R U') R2 [U]